Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Electrophoresis ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573014

RESUMO

Mass spectrometry (MS) has revolutionized analytical chemistry, enabling precise identification and quantification of chemical species, which is pivotal for biomarker discovery and understanding complex biological systems. Despite its versatility, the presence of background ions in MS analysis hinders the sensitive detection of low-abundance analytes. Therefore, studies aimed at lowering background ion levels have become increasingly important. Here, we utilized the commercially available Active Background Ion Reduction Device (ABIRD) to suppress background ions and assess its effect on the liquid chromatography-electrospray ionization (LC-ESI)-MS analyses of N-glycans on the Q Exactive HF mass spectrometer. We also investigated the effect of different solvent vapors in the ESI source on N-glycan analysis by MS. ABIRD generally had no effect on high-mannose and neutral structures but reduced the intensity of some structures that contained sialic acid, fucose, or both when methanol vapor filled the ESI source. Based on our findings on the highest number of identified N-glycans from human serum, methanol vapor in the ion source compartment may enhance N-glycan LC-ESI-MS analyses by improving the desolvation of droplets formed during the ESI process due to its high volatility. This protocol may be further validated and extended to advanced bottom-up proteomic/glycoproteomic studies for the analysis of peptide/glycopeptide ions by MS.

2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 253-259, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38595241

RESUMO

OBJECTIVE: To treat the Crohn's disease (CD) patients with ustekinumab (UST), to eva-luate their clinical and endoscopic remission, and to evaluate their transmural response (TR) and transmural healing (TH) condition using intestinal ultrasonography (IUS). METHODS: Retrospective analysis was made on patients diagnosed with CD in Peking University People's Hospital from January 2020 to August 2022, who were treated with UST for remission induction and maintenance therapy. All the patients were evaluated on both week 8 and week 16/20 after treatment, including clinical, biochemical indicators, colonoscopy and IUS examination. RESULTS: A total of 13 patients were enrolled in this study, including 11 males and 2 females. The minimum age was 23 years, the maximum age was 73 years and the mean age was 36.92 years. All the patients were in the active stage of disease before treatment, and the average Best Crohn's disease activity index (Best CDAI) score was 270.12±105.55. In week 8, the Best CDAI score of the patients decreased from 270.12±105.55 to 133.16±48.66 (t=4.977, P < 0.001). Eight patients achieved clinical remission while 5 patients remained in the active stage. Nine patients underwent colonoscopy evaluation. The average simple endoscopic score for Crohn's disease (SES-CD) score decreased from 10.71±7.14 before treatment to 6.00±7.81(t=2.483, P=0.048) in week 16/20. Four patients achieved endoscopic remission while 5 patients did not. In week 8, 5 patients achieved TR, 2 patients achieved TH, the other 6 patients did not get TR or TH. In week 16/20, 6 patients achieved TR, 3 patients achieved TH while the other 4 patients did not get TR or TH. There was no significant statistical difference in the TR effect of UST between small intestine and colon lesions (Fisher test, P > 0.999). The rate of UST transmural response in the patients who had had previous biological agent therapy was lower than those with no previous biological agent therapy, but there was no significant statistical difference (Fisher test, P=0.491). CONCLUSION: After treatment of UST, the clinical and endoscopic conditions of the CD patients had been improved, and some patients could achieve clinical remission and endoscopic remission. UST had good TR and TH effects on CD. TR might appear in week 8, and the TR effect increased in week 16/20. There was no significant statistical difference in the TR effect between small intestine and colon lesions. TR effect of UST was better in the patients who had no previous biological agent therapy than those who had had other biological agents, but the result had no significant statistical difference.


Assuntos
Doença de Crohn , Masculino , Feminino , Humanos , Adulto , Adulto Jovem , Idoso , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Ustekinumab/uso terapêutico , Estudos Retrospectivos , Colonoscopia , Indução de Remissão , Resultado do Tratamento
3.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531364

RESUMO

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Assuntos
Brucella , Brucelose , Animais , Camundongos , Brucella/fisiologia , Proteômica , Brucelose/metabolismo , Retículo Endoplasmático/metabolismo
4.
Anal Chem ; 96(11): 4612-4622, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38462905

RESUMO

The iron nanozyme-based colorimetric method, which is widely applied for biosubstrate detection in in vitro diagnosis (IVD), faces some limitations. The optimal catalytic conditions of iron nanozymes necessitate a strong acidic environment, high temperature, and other restrictive factors; additionally, the colorimetric results are highly influenced by optical interferences. To address these challenges, iron nanozymes doped with various transition elements were efficiently prepared in this study, and notably, the manganese-modified one displayed a high catalytic activity owing to its electron transfer property. Furthermore, the introduction of lanthanide ions into the catalytic reactions, specifically the neodymium ion, significantly boosted the generation efficiency of hydroxyl radicals; importantly, this enhancement extended to a wide range of pH levels and temperatures, amplifying the detection signal. Moreover, the nanozyme's superparamagnetic characteristic was also employed to perform a logical optical and magnetic resonance dual-modality detection for substrates, effectively eliminating background optical interference and ensuring a reliable verification of the signal's authenticity. Based on this magnetic signal, the integration of natural glucose oxidase with the nanozyme resulted in a notable 61.5% increase in detection sensitivity, surpassing the capabilities of the traditional colorimetric approach. Consequently, the incorporation of lanthanide ions into the magnetic nanozyme enables the effective identification of physiological biomarkers through the dual-modality signal. This not only guarantees enhanced sensitivity but also demonstrates significant potential for future applications.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Ferro , Espectroscopia de Ressonância Magnética , Íons/química , Colorimetria/métodos , Peróxido de Hidrogênio
5.
Methods Mol Biol ; 2762: 281-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315372

RESUMO

Glycosylation refers to the biological processes that covalently attach carbohydrates to the peptide backbone after the synthesis of proteins. As one of the most common post-translational modifications (PTMs), glycosylation can greatly affect proteins' features and functions. Moreover, aberrant glycosylation has been linked to various diseases. There are two major types of glycosylation, known as N-linked and O-linked glycosylation. Here, we focus on O-linked glycosylation and thoroughly describe a bottom-up strategy to perform O-linked glycoproteomics studies. The experimental section involves enzymatic digestions using trypsin and O-glycoprotease at 37 °C. The prepared samples containing O-glycopeptides are analyzed using nanoHPLC coupled with tandem mass spectrometry (MS) for accurate identification and quantification.


Assuntos
Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Glicosilação , Peptídeos/metabolismo , Glicopeptídeos/química
6.
Heliyon ; 10(4): e26082, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404812

RESUMO

Background: Social isolation can be particularly challenging for individuals with high autistic traits who struggle with social interactions. The COVID-19 pandemic led to increased isolation, exacerbating stress for those who may have difficulty in connecting with others. This study aimed to explore the relationship between autistic traits and stress associated with social isolation. Methods: A sample of 1597 Chinese adults completed measures of autistic traits, the stress of social isolation, psychological inflexibility and core self-evaluation, during an epidemic prevention and control period of COVID-19 in Chongqing, China. Measures included the Autism-Spectrum Quotient, Coronavirus Stress Measure, Acceptance and Action Questionnaire-II, and Core Self-Evaluation Scale. Results: Autistic traits were positively correlated with the stress of social isolation, which was mediated by the chain effect of core self-evaluation and psychological inflexibility. individuals with high autistic traits reported significantly higher stress than individuals with low autistic traits. Limitations: This was a cross-sectional study, which limits causal inference. In addition, data were self-reported, which may cause methodological effects. Finally, this study was conducted during China's quarantine policy and external validation of the findings is required. Conclusions: Autistic traits are positively associated with the stress of social isolation. Autistic traits affected core self-evaluation first, and psychological inflexibility subsequently, leading to the stress of social isolation. individuals with high autistic traits tended to experience higher levels of stress during pandemic quarantines. The findings provide useful evidence for developing interventions and implementing preventive measures to reduce stress in individuals with high autistic traits and autism spectrum disorder.

7.
Pharmaceutics ; 16(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276499

RESUMO

In recent years, there has been a growing interest in antimicrobial peptides as innovative antimicrobial agents for combating drug-resistant bacterial infections, particularly in the fields of biofilm control and eradication. In the present study, a novel cationic antimicrobial peptide, named LC-AMP-F1, was derived from the cDNA library of the Lycosa coelestis venom gland. The sequence, physicochemical properties and secondary structure of LC-AMP-F1 were predicted and studied. LC-AMP-F1 was tested for stability, cytotoxicity, drug resistance, antibacterial activity, and antibiofilm activity in vitro compared with melittin, a well-studied antimicrobial peptide. The findings indicated that LC-AMP-F1 exhibited inhibitory effects on the growth of various bacteria, including five strains of multidrug-resistant bacteria commonly found in clinical settings. Additionally, LC-AMP-F1 demonstrated effective inhibition of biofilm formation and disruption of mature biofilms. Furthermore, LC-AMP-F1 exhibited favorable stability, minimal hemolytic activity, and low toxicity towards different types of eukaryotic cells. Also, it was found that the combination of LC-AMP-F1 with conventional antibiotics exhibited either synergistic or additive therapeutic benefits. Concerning the antibacterial mechanism, scanning electron microscopy and SYTOX Green staining results showed that LC-AMP-F1 increased cell membrane permeability and swiftly disrupted bacterial cell membranes to exert its antibacterial effects. In summary, the findings and studies facilitated the development and clinical application of novel antimicrobial agents.

8.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991273

RESUMO

Prolonged exposure to others' suffering can lead to empathy fatigue, especially when individuals struggle to effectively regulate their empathic capacity. Shifting active attention away from emotional components toward cognitive components of others' suffering is an effective strategy for mitigating empathy fatigue. This research investigated how top-down attentional manipulation modulates empathy fatigue in both auditory (Study 1) and visual (Study 2) modalities. Participants completed two tasks in both studies: (i) the attention to cognitive empathy task (A-C task) and (ii) the attention to emotional empathy task (A-E task). Each task included three blocks (Time Block 1, Time Block 2, and Time Block 3) designed to induce empathy fatigue. Study 1 revealed that the A-C task reduced empathy fatigue and N1 amplitudes than the A-E task in Time Block 3, indicating that attention to cognitive empathy might decrease auditory empathy fatigue. Study 2 indicates that the A-C task caused a longer N2 latency than the A-E task, signifying a decelerated emotional empathic response when attention was on cognitive empathy in the visual modality. Overall, prioritizing cognitive empathy seems to conserve mental resources and reduce empathy fatigue. This research documented the relationship between top-down attention and empathy fatigue and the possible neural mechanism.


Assuntos
Emoções , Empatia , Humanos , Emoções/fisiologia
9.
Front Hum Neurosci ; 17: 1201559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799189

RESUMO

As society and the economy have advanced, the focus of architectural and interior environment design has shifted from practicality to eliciting emotional responses, such as stimulating environments and innovative inclusive designs. Of particular interest is the home environment, as it is best suited for achieving restorative effects, leading to a debate between interior qualities and restorative impact. This study explored the relationships between home characteristics, restorative potential, and neural activities using the Neu-VR. The results of the regression analysis revealed statistically significant relationships between interior properties and restorative potential. We examined each potential characteristic of the home environment that could have a restorative impact and elucidated the environmental characteristics that should be emphasized in residential interior design. These findings contribute evidence-based knowledge for designing therapeutic indoor environments. And combining different restorative potential environments with neural activity, discussed new neuro activities which may predict restorativeness, decoded the new indicators of neuro activity for environmental design.

10.
J Agric Food Chem ; 71(36): 13346-13362, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651598

RESUMO

Insoluble dietary fiber (IDF) was recently revealed to have an antiobesity impact. However, the impact and potential mechanism of high-purity IDF derived from okara (HPSIDF) on obesity caused by a high-fat diet (HFD) remain unclear. Except for dietary supplementation, intermittent fasting (IF) has attracted extensive interest as a new dietary strategy against obesity. Thus, we hypothesize that HPSIDF combined with IF treatment may be more effective in preventing obesity. In this study, HPSIDF combined with IF treatment synergistically alleviated HFD-induced dyslipidemia, impaired glucose homeostasis, systemic inflammation, and fat accumulation. Furthermore, gut microbiota dysbiosis and lowered short-chain fatty acid synthesis were recovered by HPSIDF combined with IF treatment. Meanwhile, metabolomic analysis of feces revealed that HPSIDF combined with IF treatment obviously reversed the alterations of metabolic pathways and differential metabolites induced by HFD, which were linked to the modulations of the gut microbiota. Collectively, our findings indicated that HPSIDF combined with IF treatment has great potential to substantially enhance antiobesity efficacy by modulating the gut microbiota and its metabolites.


Assuntos
Microbioma Gastrointestinal , Jejum Intermitente , Humanos , Jejum , Obesidade/tratamento farmacológico , Fibras na Dieta
11.
J Chromatogr A ; 1705: 464198, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37442073

RESUMO

Changes in the expression of glycan isomers have been implicated in the development and progression of several diseases. However, the analysis of structurally diverse isomeric N-glycans by LC-MS/MS is still a major analytical challenge, particularly due to their large number of possible isomeric conformations. Common approaches derivatized the N-glycans to increase their hydrophobicity and to gain better detection in the MS system. Unfortunately, glycan derivatization is time-consuming and, in many cases, adds complexity because of the multiple reaction and cleaning steps, incomplete chemical labeling, possible degradation, and unwanted side reactions. Thus, analysis of native glycans, especially for samples with low abundance by LC-MS/MS, is desirable. Normal phase chromatography, which employs HILIC stationary phase, has been commonly employed for the identification and separation of labeled glycans. In this study, we focused on achieving efficient isomeric separation of native N-glycans using a nano ZIC-HILIC column commonly employed to separate labeled glycans and glycopeptides. Underivatized sialylated and oligomannose N-glycans derived from bovine fetuin and Ribonuclease B were initially utilized to optimize chromatographic conditions, including column temperature, pH of mobile phases, and gradient elution time. The optimized condition was then applied for the isomeric separation of native N-glycans derived from alpha-1 acid glycoprotein, as well as from biological samples. Finally, we confirmed the stability and reproducibility of the ZIC-HILIC column by performing run-to-run comparisons of the full width at half height (FWHM) and retention time on different N-glycans. The variability in FWHM was less than 0.5 min, while that of retention time was less than 1.0 min with %RSD less than 1.0%.


Assuntos
Polissacarídeos , Espectrometria de Massas em Tandem , Animais , Bovinos , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Polissacarídeos/química , Interações Hidrofóbicas e Hidrofílicas
12.
Foods ; 12(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37444211

RESUMO

Insoluble dietary fiber is a macromolecular polysaccharide aggregate composed of pectin, glycoproteins, lignin, cellulose, and hemicellulose. All agricultural by-products contain significant levels of insoluble dietary fiber. With the recognition of the increasing scarcity of non-renewable energy sources, the conversion of single components of dietary fiber into renewable energy sources and their use has become an ongoing concern. The isolation and extraction of single fractions from insoluble dietary fiber is one of the most important recent research directions. The continuous development of technologies for the separation and extraction of single components is aimed at expanding the use of cellulose, hemicellulose, and lignin for food, industrial, cosmetic, biomedical, and other applications. Here, to expand the use of single components to meet the new needs of future development, separation and extraction methods for single components are summarized, in addition to the prospects of new raw materials in the future.

13.
J Chromatogr A ; 1706: 464237, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37523904

RESUMO

Retention time is one of the most important parameters that has been widely used to demonstrate the separation results obtained from liquid chromatography (LC) platforms. However, retention time can shift when samples are tested with different instruments and laboratories, which hinders the identification process of analytes when comparing data collected from different LC systems. To address this problem, hydrophobicity index was introduced for retention time normalization of the glycopeptides separated by reversed-phase LC (RPLC). Tandem MS was used for the detection and identification of glycopeptides. In addition, the influence of different types of glycans on the hydrophobicity of peptide backbones was studied by comparing the retention time of glycopeptides with their non-glycosylated counterparts. The hydrophobicity of tryptic digested glycopeptides derived from model glycoproteins, including bovine fetuin, α1-acid glycoprotein, and haptoglobin from human plasma, were evaluated based on the hydrophobicity index of the standard peptides from a peptide retention time calibration mixture. The reduction of hydrophobicity of multiple peptide backbones was observed due to the hydrophilic glycan structures. By comparing the hydrophobicity index of glycopeptides collected from different time and instruments, the day-to-day and lab-to-lab comparisons suggested high reliability and reproducibility of this approach. The RSD% of hydrophobicity index from inter-lab experiments was 1.2%, while the RSD% of retention time was 5.1%. Then, the applications of this method were demonstrated on complex glycopeptide samples extracted from human blood serum. The hydrophobicity index can be applied to address the retention time shift when using different instruments, thereby boosting confidence of the characterization of glycopeptides.


Assuntos
Cromatografia de Fase Reversa , Espectrometria de Massas em Tandem , Animais , Bovinos , Humanos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Glicopeptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos/química
14.
J Proteomics ; 287: 104980, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499746

RESUMO

The high purity insoluble dietary fiber (IDF) from okara is a natural component with a potentially positive effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, although its regulatory mechanism remains unclear. This study aims to elucidate the potential pathways and key proteins of IDF for the amelioration of hepatic lipid metabolism in mice fed with HFD. Here, we used label-free quantitative proteomics technology to quantity and identify differentially expressed proteins in the liver that are associated with IDF treatment. The differentially expressed proteins were assessed by GO annotation and KEGG pathways. Western blot and qRT-PCR analyses were conducted to validate the potential targets regulated by IDF. In total, 73 differentially expressed proteins were identified, of which 27 were up-regulated (FC > 1.5) and 46 were down-regulated (FC < 0.667). GO analysis suggested that differentially expressed proteins were mainly located in the cell and organelles, regulated biological processes, and were associated with enzyme activity and molecular binding. The KEGG pathway enrichment analysis further demonstrated glycolysis/gluconeogenesis, pyruvate metabolism, TCA cycle, arginine biosynthesis, alanine, aspartate and glutamate metabolism, and retinol metabolism were affected. The combination of proteomics, Western blot, and qRT-PCR suggested that ACS, ACLY, GOT1, GLS2, NAGS, CYP4A10, CYP3A25, and CYP2A5 in these pathways might be key proteins for IDF intervention. Taken together, our findings elucidate new mechanisms involved in how IDF affects hepatic metabolism, provide important information for the functional food industries, and improve the added value of okara. SIGNIFICANCE: Okara is evidenced as a high-quality by-product with several nutritional components, especially dietary fiber (50-60%) labeled as "The Seventh Nutrient". Previous studies have shown that IDF has a positive potential effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, but its molecular mechanism remains unclear. To elucidate the therapeutic mechanism of IDF at the protein level, a label-free quantitative proteomic analysis was used to identify the dynamic changes of the liver proteome between HIDF and HFD groups in this study. These results provide a new perspective for exploring the therapeutic mechanism of IDF at the protein level and enlightenment for promoting the comprehensive utilization of okara.


Assuntos
Dieta Hiperlipídica , Metabolismo dos Lipídeos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Proteômica , Fígado/metabolismo , Proteínas/análise , Fibras na Dieta/farmacologia , Fibras na Dieta/análise , Fibras na Dieta/metabolismo
15.
Foods ; 12(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238899

RESUMO

Numerous investigations have shown that insoluble dietary fiber (IDF) has a potentially positive effect on obesity due to a high-fat diet (HFD). Our previous findings based on proteomic data revealed that high-purity IDF from soybean residue (okara) (HPSIDF) prevented obesity by regulating hepatic fatty acid synthesis and degradation pathways, while its intervention mechanism is uncharted. Consequently, the goal of this work is to find out the potential regulatory mechanisms of HPSIDF on hepatic fatty acid oxidation by determining changes in fatty acid oxidation-related enzymes in mitochondria and peroxisomes, the production of oxidation intermediates and final products, the composition and content of fatty acids, and the expression levels of fatty acid oxidation-related proteins in mice fed with HFD. We found that supplementation with HPSIDF significantly ameliorated body weight gain, fat accumulation, dyslipidemia, and hepatic steatosis caused by HFD. Importantly, HPSIDF intervention promotes medium- and long-chain fatty acid oxidation in hepatic mitochondria by improving the contents of acyl-coenzyme A oxidase 1 (ACOX1), malonyl coenzyme A (Malonyl CoA), acetyl coenzyme A synthase (ACS), acetyl coenzyme A carboxylase (ACC), and carnitine palmitoyl transferase-1 (CPT-1). Moreover, HPSIDF effectively regulated the expression levels of proteins involved with hepatic fatty acid ß-oxidation. Our study indicated that HPSIDF treatment prevents obesity by promoting hepatic mitochondrial fatty acid oxidation.

16.
Sci Total Environ ; 884: 163826, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121324

RESUMO

Hydrothermal carbonization (HTC) represents elegant thermochemical conversion technology suitable for energy and resource recovery from wet biowaste, while the elemental nitrogen is bound to affect the HTC process and the properties of the products. In this review, the nitrogen fate during HTC of typical N-containing-biowaste were presented. The relationship between critical factors involved in HTC like N/O, N/C, N/H, solid ratio, initial N in feedstock, hydrothermal temperature and residence time and N content in hydrochar were systematic analyzed. The distribution and conversion of N species along with hydrothermal severity in hydrochar and liquid phase was discussed. Additionally, the chemical forms of nitrogen in hydrochar were elaborated coupled with the role of N element during hydrochar formation mechanism and the morphology features. Finally, the future challenges of nitrogen in biowaste involved in HTC about the formation and regulation mechanism of hydrochar were given, and perspectives of more accurate regulation of the physicochemical characteristics of hydrochar from biowaste based on the N evolution is expected.


Assuntos
Carbono , Nitrogênio , Carbono/química , Temperatura
17.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111316

RESUMO

Although biologically targeted therapies based on key oncogenic mutations have made significant progress in the treatment of locally advanced or metastatic thyroid cancer, the challenges of drug resistance are urging us to explore other potentially effective targets. Herein, epigenetic modifications in thyroid cancer, including DNA methylation, histone modifications, non-coding RNAs, chromatin remodeling and RNA alterations, are reviewed and epigenetic therapeutic agents for the treatment of thyroid cancer, such as DNMT (DNA methyltransferase) inhibitors, HDAC (histone deacetylase) inhibitors, BRD4 (bromodomain-containing protein 4) inhibitors, KDM1A (lysine demethylase 1A) inhibitors and EZH2 (enhancer of zeste homolog 2) inhibitors, are updated. We conclude that epigenetics is promising as a therapeutic target in thyroid cancer and further clinical trials are warranted.

18.
Biomolecules ; 13(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36979356

RESUMO

Narcolepsy type 1 (NT1) is the most common type of narcolepsy known to be caused by the loss of specific neurons responsible for producing peptide neurotransmitters (orexins/hypocretins), resulting in a sleep-wake cycle disorder. It is characterized by its association with cataplexy and abnormalities in rapid eye movement. To date, no cure has been established for this life-threatening condition. Misdiagnosis of NT1 is also quite common, although it is not exceedingly rare. Therefore, successfully identifying candidate serum biomarkers for NT1 would be a head start for accurate diagnosis and development of therapeutics for this disorder. This study aims to identify such potential serum biomarkers. A depletion protocol was employed for 27 human serum samples (16 NT1 and 11 healthy controls), followed by applying LC-MS/MS bottom-up proteomics analysis, then LC-PRM-MS for validation. The comparison of the proteome profiles of the low-abundant proteins in the samples was then investigated based on age, sex, sample groups, and the presence of the Human Leukocyte Antigen (HLA) DQB1*0602 allele. The results were tracked to gene expression studies as well as system biology to identify key proteins and understand their relationship in the pathogenesis of NT1. Our results revealed 36 proteins significantly and differentially expressed. Among the impaired pathways and bioprocesses, the complement activation pathway is impaired by six of the differentially expressed proteins (DEPs). They are coded by the genes C2, CFB, C5, C1R, C1S, and MASP1, while 11 DEPs are involved in Acute Phase Response Signaling (APRS), which are coded by the genes FN1, AMBP, APOH, CFB, CP, ITIH2, C5, C2, F2, C1, and ITIH4. The combined AUCs of the downregulated and upregulated DEPs are 0.95 and 0.76, respectively. Overall, this study reveals potential serum-protein biomarkers of NT1 and explains the possible correlation between the biomarkers and pathophysiological effects, as well as important biochemical pathways involved in NT1.


Assuntos
Narcolepsia , Proteômica , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Narcolepsia/etiologia , Narcolepsia/genética , Biomarcadores , Orexinas
19.
Biometrics ; 79(1): 368-380, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571583

RESUMO

A sequential multiple assignment randomized trial (SMART) facilitates the comparison of multiple adaptive treatment strategies (ATSs) simultaneously. Previous studies have established a framework to test the homogeneity of multiple ATSs by a global Wald test through inverse probability weighting. SMARTs are generally lengthier than classical clinical trials due to the sequential nature of treatment randomization in multiple stages. Thus, it would be beneficial to add interim analyses allowing for an early stop if overwhelming efficacy is observed. We introduce group sequential methods to SMARTs to facilitate interim monitoring based on the multivariate chi-square distribution. Simulation studies demonstrate that the proposed interim monitoring in SMART (IM-SMART) maintains the desired type I error and power with reduced expected sample size compared to the classical SMART. Finally, we illustrate our method by reanalyzing a SMART assessing the effects of cognitive behavioral and physical therapies in patients with knee osteoarthritis and comorbid subsyndromal depressive symptoms.


Assuntos
Projetos de Pesquisa , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Tamanho da Amostra , Simulação por Computador , Distribuição de Qui-Quadrado
20.
Nanoscale ; 15(3): 1260-1272, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36541665

RESUMO

Flexible power sources are crucial to developing flexible electronic systems; nonetheless, the current poor stretchability and stability of flexible power sources hinder their application in such devices. Accordingly, the stretchability and fatigue stability of flexible power sources are crucial for the practical application of flexible electronic systems. In this work, a flexible electrode with an arc-shaped star concave negative Poisson's ratio (NPR) structure is fabricated through the screen printing process. Using the combination of finite element analysis (FEA) and tensile tests, it is proven that the arc-shaped star concave NPR electrode can effectively reduce the maximum tensile stress and increase the maximum elongation (maximum elongation 140%). Furthermore, the flexible electrodes prepared in this study are assembled into all-solid-state symmetric supercapacitors (SSCs), and their electrochemical properties are tested. The SSC prepared in this study has a high areal capacitance of 243.1 mF cm-2. It retains 89.25% of its initial capacity after 5000 times of folding and can maintain a stable output even in extreme deformation, which indicates that the SSC prepared in this study has excellent stability. The SSC with the advantages mentioned above obtained in this study is expected to provide new opportunities to develop flexible electronic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...